Using ICT to deliver education

Previously, I have explained how advances in solar energy and future budget satellite broadband will be an enabler for educating children. In this article, we will take a closer look at how technology can be used to deliver educational content to children in various settings. Please read on to learn more about the technology, the settings in which the delivery of education needs to be prioritised and finally how the technologist needs to work closely with the educationalist to create value for money ways of delivering educational content.  

The Technology
Technologist have been accused of inventing solutions and then imposing them on a particular setting. This often leads to failure which leads to a lack of confidence in the  IT sector – we can turn this around. Successful projects will start with conversations between the education stakeholders and technical experts who can then seek out the best technical solution to deliver education. The way in which educational content can be delivered is numerous, here are some popular examples: 

·         Individual learning through the use of online applications, tablets and smartphones.
·         Teacher lead tuition in a classroom environment (sometimes with very large class sizes).
·         Supervised learning in a controlled environment.

From a technology point of view, a programme based on teacher-led education will be the cheapest to deploy as a small number of computers will be needed, perhaps just one. This approach also keeps the costs of supporting services such as power supplies and internet connections to a minimum. Using the technology, teachers are enabled to present content to larger class sizes. Outside of class time, teachers will be able to access the equipment to help them to keep their skills up to date and perhaps to learn new subjects to teach? The chief challenge to this approach is to make sure that there are sufficient good teachers in the first place. This can be a massive challenge for some countries where quality teacher development programmes are either poor quality or non-existent.

So how do we provide education to children in the communities where there are no teachers? This is where technology can bridge the gap, but its more expensive. Technologies exists which enables teachers to run classes from remote locations. Some software houses have developed solutions where student computers are linked to the teachers computer.

The teacher has full control over the student computers so that formal learning can be conducted. Using the control buttons, the teacher has the ability to launch specific education content either for the whole class or on a student by student basis. There is also a function which blanks the students computer screen displaying the text “Pay attention to the teacher”.

Via remote links, qualified teachers can run classes to a larger audience over many sites simultaneously. Local supervisors are present at each site to facilitate the students. In an off grid setting, the same technology can be used by classroom supervisors to run some of the pre-loaded lessons.

Looking more closely at self-paced online learning, there are hundreds of providers in the market like Cornerstone who have built up Learning Management Systems for a wide range of topics. Much of this online training has its roots into workplace training for compliance topics such as health and safety. But if a google search is made for LMS which work in an online/offline environment, choices are more restricted. Choices become further reduced when there is a requirement for multiple platforms (Microsoft, Apple and Android).

The purpose of LMS is to serve up training and to monitor the students’ progress. This can lead to a course completion certificate or qualification once the module is complete.

So – what about offline self-paced learning? One of the revolutionary products emerging is the Actionable Data Book (ADP) is an advance on the e-book approach as it contains word search, video and interactive content. Where it differs from the e-book is that the ADP standard is non-proprietary which means that as an IEEE standard which takes a different approach from the propriety systems like Nook or Kindle. The ADP format is a standard which will run on systems regardless of brand.

Context driven solutions
Taking a step back from the technology, let’s look at examples of contexts which education is delivered and some of the associated challenges: 

  • Refugees/IDPs: Figures from the UNHCR (May 2017) states that there are over 65 million forcibly displaced people worldwide. Just over 21 million of these people are under the age of 18. Where populations are displaced, education is disrupted. The conflict in Syria is leading to a lost generation where a significant cohort of children will not receive education. The task to capture 21 children and provide education is enormous. Technology will have a major role to play in addressing the need. In settings where people have smartphones, some education tools can be distributed through apps. In some settings, distributing technology to children can place them at risk from mugging.
  • Disaster Preparedness: There are many communities who normally have access to education, but are at risk from natural disasters such as Cyclones, Tsunamis and Volcanic Eruptions. In such circumstances pre-positioned technology can be sent to places of shelter to set up classrooms so that children can continue education. Such preparedness plans could be aligned so that education delivered could be aligned to national curriculums (if they exists).Quite often such interventions are short term using quick deploy satellite communications systems such as the SpeedCast system used in Australia.

 

  • Rural: In developing countries, technology enabled education will have a very positive impact on a large rural population. Whilst Africa is mostly off grid in rural settings, the combination of sustainable solar energy solutions and the arrival of low cost internet access within the next two years is going to make the delivery of education easier in rural places. In developing technology aided educations is not going to be cheap. Future programme delivery must be sustainable. This means that it needs to incorporate an ongoing funding model, perhaps with some cost recovery, a reliable supply chain of contents, technical management to keep the technology working, and an element of M&E to capture the programmes impact on communities (leading to continuous improvement).

Education content
What do we teach the children using technology?  This is a question for the education experts to solve and clearly it will be context driven. In the emergency or refugee setting, there are basic life skills content covering topics on how to stay safe in the hostile environment. To deliver education using technology, it’s the educational content which needs to drive the project. Developers of such content should consider designing their solutions to work on as many technologies as possible. In India, the Vodafone Foundation is supporting the Social App Hub, https://knowledge.socialapphub.com. This is a directory of education and life skills apps which have been reviewed and validated by experts.

So returning to our teacher/student example, the success in developing a via product is by ensuring that the solution used to deliver education is content agnostic. If its built in the Microsoft windows environment, we start to get the flexibility so that teachers can either launch pre-made content or even develop their own content using tools such as PowerPoint.

So, to conclude, Technology has the ability to improve education in a variety of settings. With the arrival of cheaper internet access just over the horizon, now might just be the right time to lobby donors for funding to run large scale programmes to educate the next generation.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply